Add convenience functions for training and testing

parent a5a741f6
from .jpeg_model import *
from .spatial_model import *
\ No newline at end of file
from .spatial_model import *
from .utils import *
\ No newline at end of file
import torch
import torch.nn.functional as F
def train(model, device, train_loader, optimizer, epoch):
for batch_idx, (data, target) in enumerate(train_loader):
data, target =,
output = model(data)
loss = F.cross_entropy(output, target)
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target =,
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
\ No newline at end of file
Markdown is supported
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment